SUBJECT INDEX

ABACUS, 59	Biological particles. See also
ADAC Forte, 154	Micromanipulation, in mechanical
Adhesion strength, measurement of	characterisation of single particles
of bacteria, 72–73	animal cells, in suspension culture,
food fouling, 75	51–53
Advantose [™] 100, 63, 64, 65	chondrocytes, 53–54
AFM. See Atomic force microscopy	filamentous microorganisms, 56
(AFM)	plant cells, 56–57
Algebraic reconstruction techniques	yeast and bacterial cells, 54–55
(ART), 182	Biomass and biofilm formation, fouling
Alginate, 58	of surfaces by, 72–74
Alginate-chitosan microcapsules, 58-59	Birmingham positron camera, 154, 171
Ambient air studies, in automotive soot	Boltzmann integral expression, 43
investigations, 260–262	BP's Hull Research and Technology
Animal cells, in suspension culture,	Centre, 173
51–53	Brunauer-Emmett-Teller (BET) analysis,
Ar laser, 94, 138	240–241
Aspergillus nidulans, 56	Bubbly flow, in gas-liquid two-fluid
Atomic force microscopy (AFM), 33–35, 54, 56, 70–71, 73, 74	flows measurement, 121, 125–136
Automotive soot investigations	Calcium alginate microspheres, 58, 59
ambient air studies, 260–262	Calcium-shellac microsphere, 59
inside and outside the car, 261-262	CARPT. See Computer-automated
LII applications, 251–262	radioactive particle tracking
LII exhaust gas sensor, 251–254	technique (CARPT)
raw exhaust gas measurements,	Cartesian coordinates, 18
254–260	Cell poking technique, 33–35
A_{wet} . See Liquid phase (A_{wet}) Axial dispersion coefficient, D , 165	CFB. See Circulating fluidised beds (CFB)
,,,,,	Chitosan, 58, 59
Bacillus subtilis, 37, 55	Chondrocytes, 53–54
"Back-to-back" γ-rays, 151	Chondrons, defined, 53
Bacterial cells, 54–55	CIP. See Cleaning-in-place (CIP)
adhesion strength of, measurement of,	Circulating fluidised beds (CFB), 156,
72–73	159–160
Barcroft [™] CS90 calcium carbonate, 63	ECT applications in, 186-190
Biocompatible particles, 58–59. See also	Cleaning-in-place (CIP), 74
Micromanipulation, in mechanical	Coherent anti-stokes Raman scattering
characterisation of single particles	(CARS) thermometry, 236

Compression testing, by	Doppler velocimetry, 2–3
micromanipulation. See Diametrical	laser, 2
compression	ultrasonic, 3
Computed tomography (CT), 182	DPPC. See Dipalmitoyl phosphatidyl
Computer-automated radioactive	choline (DPPC)
particle tracking technique	Dual-plane PIV, 117–118
(CARPT), 150–151	Dynamic light scattering (DLS), 224, 262
Confocal µ-PIV technique, 104–105, 120	Dynamic PIV, 115
Continuously regeneration trap (CRT)	27.1.1.1.0
filter system, 258	Electic membrane model 44 47 E7
Continuous wave (CW) lasers, 94–95	Elastic membrane model, 44–47, 57
Core/shell structure of microparticles,	Electrical capacitance tomography
models for, 44–51	(ECT), 180–196
Coriolis flow meter, 11–12	applications, 186–196
	circulating fluidized beds (CFB),
Correlation analysis for gas–liquid	186–190
interface heights, 15–16	hydrodynamic behaviors in bubble
Correlation coefficient, defined, 15	and slurry bubble columns,
Cross-correlation analysis, for PIV	191–196
technique, 97–98	pneumatic solid conveying,
CTI ECAT931/08, 171–172	190–191
⁶¹ Cu (half-life 3.4 h), 154	principle of, 183–186
	Electrical capacitance volume
DCPD. See Dicyclopentadiene (DCPD)	tomography (ECVT), 192-194,
Defocusing concepts, 111	196–197, 215
Defocusing particle image velocimetry	Electrical impedance tomography (EIT),
(DPIV) technique, 111–112	198, 200–202
DEM. See Discrete element modelling	strategies employed in, 200-202
(DEM)	Electrical magnetic tomography (EMT),
Diametrical compression, 37–51	181
experimental setup, 37–40	Electrical resistance tomography (ERT),
microcapsules and, 65-67	196–209
of single particles, mathematical	applications, 204–209
modelling of	high-speed flow imaging in slurry
Hertz model, 40–41	conveying, 205–207
microparticles with core/shell	hydrocyclone flow visualization
structure, models of, 44–51	and comparison with
Tatara analysis, 41–42	computational fluid dynamics,
viscoelastic model, 42–44	204–205
of two-week-old suspension-cultured	visualization of dispersions in an
tomato cells, 57	oscillatory baffled reactor,
	207–209
Dicyclopentadiene (DCPD), 67	principle of, 198–203
Dielectric particle, optical trapping of, 35–36	
	Electromagnetic flow meters, 11–12
Dipalmitoyl phosphatidyl choline	Electron microscopy, 76
(DPPC), 70	Energy balance, determination and LII
Discrete element modelling (DEM), 164	signal, 225–228
Disc-shearing device, 72–73	Environmental scanning electron
Dispersion of particle pulse in gas-solid	microscope (ESEM), 76–77
fluidized beds, PET applications in,	EPS. See Exopolysaccharides (EPS)
212–213	Escherichia coli, 55
Dispersion time, defined, 167	ESEM. See Environmental scanning
DLVO theory, 68	electron microscope (ESEM)

Eudragit[®] L100-55, 62-65 Gas-liquid two-phase flows in Eudragit microparticles, 39 microchannels, in gas-liquid Eudragit® S100, 63 two-fluid flows measurement, 3D Euler-Lagrangian hardsphere 136-137 discrete particle model (DPM), 160 γ -ray tomography (GRT), 181 Green strain, defined, 49 Excipients, pharmaceutical, 61–64 Exopolysaccharides (EPS), 72 Hencky/true strain, defined, ¹⁸F (half-life 110 min), 153–154 Filamentous microorganisms, 56 He-Ne laser, 94 Flame investigations, by LII, 236-237 Hertz equation, 41 Fluidised beds, PEPT used in Hertz model, 40-41 circulating fluidised beds (CFBs), High-speed flow imaging in slurry 159-160 conveying, ERT applications in, Fluidized beds, PEPT used in 205-207 computational models, validation of, Holographic particle image 160-162 velocimetry (HPIV) technique, motion close to surfaces, 158-159 109-111 solids motion studies, 156-158 Hooke's law strain energy Food fouling deposits, 74-75 function, 45, 49 Force spectroscopy, 34 Hot wall reactor, 249-251 Fouling, of surfaces Hot-wire anemometry, 2 biomass and biofilms, 72-74 Hydrocyclone flow visualization and food fouling deposits, 74–75 comparison with computational Four-pulse ultrasound wave, at fluid dynamics, ERT applications gas-liquid interface, 7 in, 204-205 Free-surface flow, in gas-liquid two-fluid Hydrodynamic behaviors in bubble and flows measurement, 121-125 slurry bubble columns, ECT Furnace black reactor, 242-245 applications in, 191-196 Fusarium graminearum, 56 Imaging tomography, 2 ⁶⁶Ga (9.3 h), 154 Instantaneous shear modulus (G_0), Gas-liquid interface four-pulse ultrasound wave at, Ion-exchange resin particle, 38–39 reflected, 7 Iterative linear back projection (ILBP), liquid velocity and 185 - 187experimental approach, 6-10 experimental setup, 4–5 JKR theory, 69 proposed experimental method, Jurket T lymphomas cells, 35 validation of, 10-11 peak ultrasound echo intensity and, 3, Kelvin-Voigt element, 42 experimental approach, validation of, 18–24 Lactose, particle–surface interactions of AFM for, 70 experimental setup, 12-13 Laplacian filter, 7–8 method, experimental, 13–18 Gas-liquid two-fluid flows measurement Lardner and Pujara's model, using PIV technique, 121-137 bubbly flow, 125-136 Laser Doppler velocimetry, 2 free-surface flow, 121-125 Laser-induced fluorescence (LIF) gas-liquid two-phase flows in technique, 92, 119, 121, 127-137, microchannels, 136-137 139-140

Laser-induced incandescence (LII), 224 applications, 237–265 automotive soot investigations, 251–262	Mechanotransduction, 53 Melamine formaldehyde (MF) microcapsules, 67 microparticles, 71
nanoparticle production processes control, 237–251	Metal and metal oxides production reactors, 246–251
particle suspensions, 262–265	hot wall reactor, 249–251
flame investigations, 236–237 signal and determination of	laser vaporization reactor, 246–249
energy balance, 225–228	MF. See Melamine formaldehyde (MF) Microcapsules, 65–67
primary particle size and its	Micromanipulation, in mechanical
distribution, 228–236	characterisation of single particles,
Laser-Induced Soot Analyzer (LI ² SA),	29–85
253, 255	status and applications
Laser trapping, 68–70	biocompatible particles, 58–59
Laser tweezers. See Optical trapping method	biological particles, 51–57
Laser vaporization reactor (LVR),	fouling deposits on surfaces, 72–75
246–249	non-biological particles, 59–67 particle adhesion to surface, 70–72
LII exhaust gas sensor, 251–254	particle–particle adhesion, 68–70
Linear back projection (LBP) technique,	sub-micron/nanoparticles,
185–187, 203 Linear forward projection (LFP)	nanomanipulation of, 75-77
technique, 184	techniques for
"Liquid-drop" model, 44	cell poking and atomic force microscopy (AFM), 33–35
Liquid-liquid two-fluid flows	diametrical compression. See
measurement, using PIV technique, 119–121	Diametrical compression
Liquid phase (A_{wet}), calculation of	micropipette aspiration, 32–33
portion of pipe occupied by, 16–18	optical trapping, 35–37
Liquid velocity	pressure probe, 31–32
gas-liquid interface inferred from	Micropipette aspiration, 32–33, 53, 68 Microspheres, 59–65
experimental approach, 6–10	chromatographic resins, 60–61
experimental setup, 4–5 proposed experimental method,	pharmaceutical excipients, 61–65
validation of, 10–11	Mixer effectiveness (ME), 167
Loading and unloading curves, 39–40	Mooney-Rivlin model, 45
Local-field correlation particle image	
velocimetry (LFCPIV) method, 99	Nanomanipulation, of sub-micron/
Long-term shear modulus (G_{∞}) , 43	nanoparticles, 75–77
Lycopersicon esculentum, 56	Nanoparticle production processes control, 237–251
Markov chain Monte Carlo (MCMC) method, 202	furnace black reactor, 242–245 LII applications to, 237–251
MATLAB ode45 solver, 50	metal and metal oxides production
Maxwell model, 42	reactors, 246–251
ME. See Mixer effectiveness (ME)	hot wall reactor, 249–251
Mean von Mises stress, 54	laser vaporization reactor, 246–249
Mechanical characterisation of single	research plasma reactor, 237–242 Nd:YAG lasers, 94, 103–104, 115, 117,
particles, micromanipulation in. See Micromanipulation, in mechanical	136, 238–239, 249, 253, 263
characterisation of single particles	Neo-Hookean equations, 67

Neural network multi-criterion image reconstruction technique (NN- MOIRT), 185–188	dual-plane PIV, 117–118 dynamic PIV, 94–95, 103, 109, 115 orthogonal-plane PIV technique,
Newton-Raphson method (NRM), 203	118
N-methylmorpholine-N-oxide (NMMO),	scanning PIV, 115–116
71	
NMMO See M mothylmorpholino	Particle-laden multiphase flows
NMMO. <i>See N</i> -methylmorpholine- Noxide (NMMO)	measurement, using PIV technique 137–139
Non-biological particles. See also	Particle-particle adhesion, 68-70
Micromanipulation, in mechanical characterisation of single particles	Particle suspensions, LII applications to 262–265
microcapsules, 65–67	Particle tracking velocimetry (PTV)
microspheres, 60–61	algorithms, 98, 107, 112, 133–135,
chromatographic resins, 59–61	140
pharmaceutical excipients, 61–64	PCM. See Pericellular matrix (PCM)
printriaceuteur excipients, or or	
0 (1 (1) 1) 1 2 7 2 7	Peak-locking error, 100–101
Optical trapping method, 35–37	Peak ultrasound echo intensity
Optimization reconstruction techniques	gas-liquid interface inferred from, 11
(ORT), 182	experimental approach, validation
Orthogonal-plane PIV technique, 118	of, 18–24
	experimental setup, 12–13
"Packet model", 158	method, experimental, 13–18
Particle adhesion, to surface, 70–72	PEPT. See Positron emission particle
Particle collision dynamics, 160	tracking (PEPT)
Particle image accelerometry technique	Pericellular matrix (PCM), 53
(PIA), 139	PET. See Positron emission tomography
Particle image velocimetry (PIV)	(PET)
technique, 2	Piezoelectric scanner, 34
fundamentals, 90–102, 113	Piezoelectric stack, for compression
analysis, 95–101	method, 38
cross-correlation analysis, 97–98	PIV. See Particle image velocimetry (PIV)
error elimination and accuracy	2D-2C PIV techniques, 94, 103-105
improvement, 100–101	macro scale, 103
illumination and image recording,	micro scale, 103–105
92, 94–95	2D-3C PIV techniques, 105–108
	macro scale, 105–108
post-processing of velocity vectors,	micro scale, 108
101–102	3D-3C PIV techniques, 109–114
resolution improvement, 98–100	
seeding flow, 91–93	DPIV technique, 111–112
multiphase flow measurement using,	HPIV technique, 109–111, 114
118–140	macro scale, 109–114
gas-liquid two-fluid flows, 90, 92,	micro scale, 114
119–137	TPIV technique, 112–114
liquid-liquid two-fluid flows,	Plane stress, defined, 45
119–121	Plant cells, 56–57
particle-laden multiphase flows,	Plasmodium falciparum, 52
137–140	Pluronic F68, 52
seeding particles used for, 93	PMMA nanoparticles. See
types, 102–118	Polymethylmethacrylate (PMMA)
2D-2C PIV techniques, 103-105	nanoparticles
2D-3C PIV techniques, 105-108	Pneumatic solid conveying, ECT
3D-3C PIV techniques, 109-115	applications in, 190–191

Poisson ratio, 33	Red blood cells (RBCs), 32
Polymethylmethacrylate (PMMA)	stretching of, using optical trapping
nanoparticles, 76	method, 36
Polyurethane microcapsules, 67	Research plasma reactor, 237-242
Portable PEPT, 168–174. See also Positron	Residence time, defined, 158–159
emission particle tracking (PEPT)	Resins, chromatographic, 60–61
Positron emission particle tracking	Rotating drums and kilns, 162–163
(PEPT), 151–153	Runge–Kutta method, 50
applications of, 169	
fluidised beds, 156–160	Saccharomyces cerevisiae, 35, 54–55
rotating drums and kilns, 162–163	Saccharopolyspora erythraea, 56
solids mixing, 163–168	Scanners, for medical PET, 155
detectors, 154–155	Scanning electron microscopes (SEMs), 76
and PET, difference between, 151	Scanning mobility particle sizers
portable, 168, 171–173	(SMPS), 224
positron-emitting tracers, 153–154	Scanning PIV, 115–116
principles of, 151–152	SEMs. See Scanning electron
technique development, 155	microscopes (SEMs)
Positron emission tomography (PET),	Sensitivity conjugate gradients (SCG)
180–182, 209–215	method, 203
applications, 211–215	Shadow image technique (SIT), 127–136,
dispersion of particle pulse in gas- solid fluidized beds, 212–214	140 CIDT 194 197
slurry mixtures in stirred tanks,	SIRT, 186–187 Skalak–Tozeren–Zarda–Chien (STZC)
211–212	material relationship, 45
visualization of multi-phase	Slurry mixtures in stirred tanks, PET
fluids through sudden	applications in, 211–212
expansions, 213–214	Sobel filter, 8, 9
principle, 209–211	Solids mixing, PEPT and PET used in,
Positron emission tomography (PET)	163–168
and PEPT, difference between, 151	Sound, use of, in science and technology,
Positron-emitting tracers, 153–154	Consider completion real constant 2
Positron Imaging Centre at Birmingham, 154	Speckle correlation velocimetry, 3 Standard stirred tank reactors (STR),
Pressure probe, 31–32, 57	207, 211–212, 216
Primary particle size and its	Starlac [™] , 63
distribution, LII signal and	Stereoscopic µ-PIV technique, 108
determination of, 228-236	Stereoscopic PIV system, 106–107
Pseudomonas fluorescens, 73	Strain energy, defined, 45
Pulsed lasers, 90, 91, 94, 115	Stretch ratios, defined, 45
	STZC. See Skalak-Tozeren-Zarda-Chien
Radioactive particle tracking (RPT), 181	(STZC)
Raman spectroscopy, 36	Sub-micron/nanoparticles,
Ramp correction factor (RCFi), 43	nanomanipulation of, 75–77
Raw exhaust gas measurements, in	T 1 1 ('11 ('
automotive soot investigations,	Tapered element oscillating
254–260 Rayleigh-Debye-Gans (RDG) approach,	microbalance (TEOM), 261 Tatara analysis, 41–42, 61
236	Time-resolved laser-induced
RBCs. See Red blood cells (RBCs)	incandescence (TIRE-LII), 223–266
RCFi. See Ramp correction factor (RCFi)	Tomato. See Lycopersicon esculentum

Tomographic particle image velocimetry (TPIV) technique, 112–115 4V transistor–transistor logic signal, 13 Transmission electron microscopy (TEM), 224 Turgor (hydrostatic) pressures, within

Turgor (hydrostatic) pressures, within cells, 32

Ultrasonic Doppler velocimetry, 3
Ultrasonic velocity profiler (UVP)
measurements, 1, 2, 4. See also
Gas-liquid interface
Ultrasound echo intensity, 10–11, 13–15, 20
Ultrasound tomography (UST), 205
Ultrasound transducer arrangement, 14
Urea-formaldehyde microcapsules, 67
UVP-DUO systems, 2, 7, 12–13
UVP measurements. See Ultrasonic velocity profiler (UVP)
measurements

Video microscopy, 32 Viscoelastic model, 42–44, 53, 59 Visualization of dispersions in an oscillatory baffled reactor, ERT applications in, 207–209

Visualization of multi-phase fluids through sudden expansions, PET applications in, 214

V-mixer, 163

Volumetric elastic modulus, 32

We. See Weber number (We)
Weber number (We), 6
Window displacement iterative
multigrid (WIDIM) interrogation
method, 99

XPS. See X-ray photoelectron spectroscopy (XPS) X-ray photoelectron spectroscopy (XPS), 72

Yeast. *See Saccharomyces cerevisiae* Young's modulus, 33, 35, 53–54